# Требуемые инструменты, приборы, материалы

Для подключения терминала GALILEOSKY (далее – терминал, прибор) необходимо иметь:

1. Электромонтажный инструмент.



Рисунок 1

2. Комплект монтажных проводов с предохранителями.



# Общая информация

Приборы GALILEOSKY имеют функционал считывания частотного сигнала и его обработки в соответствии с настроенным алгоритмом. В качестве источника частотного сигнала могут использоваться аналогово-частотные датчики уровня топлива (далее – частотные ДУТ), выпускаемые различными производителями. (Рис. 3)



Рисунок 3. Частотные датчики уровня топлива

Принцип работы частотного ДУТ основан на преобразовании измеренной электрической емкости в частотный сигнал, пропорциональный уровню топлива в баке. Частота сигнала обычно составляет от 100 до 2000 Гц, амплитуда сигнала обычно равна половине величины напряжения питания (Рис. 4).



Рисунок 4. Частотный сигнал

## Подключение частотного ДУТ

Установить датчик уровня топлива в бак транспортного средства в соответствии с рекомендациями завода-изготовителя (Рис. 5).



Рисунок 5. Установка частотного ДУТ в бак

Подключение частотного ДУТ к прибору GALILEOSKY осуществляется в соответствии со схемой Рисунка 6 настоящей инструкции. Частотный выход ДУТ соединяется с одним из дискретно-аналоговых входов (далее - ДАВ) прибора. Отрицательный вход питания ДУТ должен быть соединен с минусом питания терминала GALILEOSKY.

В случаях когда производитель ДУТ не предусмотрел подтяжку частотного сигнала к «+» питания, дополнительно устанавливается резистор R1 номиналом 10кОм.



Рисунок 6. Схема подключения частотного ДУТ

### Настройка дискретно-аналогового входа для работы с ДУТ

Для настройки терминала GALILEOSKY на работу с частотным ДУТ необходимо подключить прибор к «Конфигуратору» и перейти на вкладку «Настройки» –> «Входы/Выходы». Настройка ДАВ терминала выполняется в 2 этапа:

- 1. Этап 1, замер средней амплитуды частотного сигнала:
  - установить тип фильтра «среднее значение»;
  - установить «длину фильтра «50»;
  - запустить двигатель автомобиля;
  - перейти на вкладку «Устройство» и слегка увеличивая обороты двигателя в течение одной минуты засечь среднее значение амплитуды сигнала, который приходит на настраиваемый вход (Рис. 7).

| 5 |
|---|
| 5 |
| 6 |
|   |

Рисунок 7. Замер средней амплитуды частотного сигнала

В случае когда производитель указал в документации к ДУТ амплитуду частотного сигнала, то искомая величина будет равна половине этой амплитуды.

- 2. Этап 2, установка фильтра для работы с частотным ДУТ:
  - перейти на вкладку «Входы/Выходы» и установить тип фильтра «подсчёт частоты»;
  - установить «длину фильтра «1»;
  - установить границу дискретного сигнала на значение средней амплитуды, замеренной на первом этапе (Рис. 8);
  - перейти на вкладку «Настройки» –> «Протокол» и установить в настройках основного пакета галочки в полях ДАВ, к которым подключены частотные ДУТ (Рис. 9);

- нажать кнопку «Применить»;
  - запустить двигатель и выполнить тарировку ДУТ в соответствии с рекомендациями завода-изготовителя.

| Безопасность Передача данных                                     | Протокол Энергосбережение | Трек Входы/выходы | Цифровые входы | Звук Сигнализация | САN Геозоны |      |
|------------------------------------------------------------------|---------------------------|-------------------|----------------|-------------------|-------------|------|
| <b>Вход 0</b><br>Тип фильтра<br>Длина фильтра                    | подсчёт частоты           | •                 |                |                   |             |      |
| Границы дискретного сигнала<br>Обнулять импульсы после записи то | HRM 📃                     |                   | 1 1            |                   |             | 4160 |

| Устройство    | Безопасность Передача данных Протокол Энерго          | сбережение Тр                          | ек Входы/выходы |  |
|---------------|-------------------------------------------------------|----------------------------------------|-----------------|--|
|               | Информация о внутреннем архиве Внутренняя флеш-память | , статический архив, размер=8590 точек |                 |  |
| 📧 Лиагностика |                                                       | Первый пакет                           | Основной пакет  |  |
| Hugues        | Версия терминала                                      |                                        |                 |  |
| 🔲 Команды     | Версия прошивки                                       |                                        |                 |  |
|               | IMEI                                                  | $\checkmark$                           |                 |  |
| 🙈 Настройки   | Номер терминала                                       |                                        |                 |  |
| Пастройки     | Номер пакета                                          |                                        |                 |  |
|               | Дата и время                                          |                                        |                 |  |
| 1 Данные      | Координаты                                            |                                        |                 |  |
| <b>A M</b>    | Скорость, направление движения                        |                                        |                 |  |
| Маршруты      | Высота                                                |                                        |                 |  |
|               | HDOP                                                  |                                        |                 |  |
| Button        | Статус терминала                                      |                                        |                 |  |
|               | Напряжение источника                                  |                                        |                 |  |
|               | Напряжение батареи                                    |                                        |                 |  |
|               | Температура внутри терминала                          |                                        |                 |  |
|               | Ускорение                                             |                                        |                 |  |
|               | Состояние выходов                                     |                                        |                 |  |
|               | Состояние входов                                      |                                        |                 |  |
|               | Вход 0                                                |                                        |                 |  |
|               | Вход 1                                                |                                        |                 |  |
|               | Вход 2                                                |                                        |                 |  |
|               | Вход З                                                |                                        |                 |  |
|               | RS232[0]                                              |                                        |                 |  |

### Рисунок 8. Настройка ДАВ на подсчет частоты

### Рисунок 9. Настройка основного пакета

После настройки аналогового входа терминала GALILEOSKY выполняется настройка мониторингового программного обеспечения (далее – мониторинговое ПО) в соответствии с рекомендациями производителя ПО.

Подключение частотного ДУТ заканчивается проверкой правильности прохождения сигнала на сервер мониторинга:

- измеренные значения частотного сигнала ДУТ передаются терминалом GALILEOSKY на сервер мониторинга в виде абсолютного значения, которое зафиксировал терминал;
- на сервере мониторинга производится математическое вычисление уровня топлива в соответствии со значениями тарировочной таблицы и формулой расчета;
- на основании вычисленных значений строятся пользовательские графические или табличные отчеты по уровню и расходу топлива (Рис. 10, 11).

Подключение частотного датчика уровня топлива к прибору GALILEOSKY завершено, прибор готов к работе.



### Рисунок 10 Пример графического отчета об уровне топлива

| N⁰ | Время               | Положение                                     | Заправлено | Кол-во | Нач. уровень | Конеч. уровень | Разница |
|----|---------------------|-----------------------------------------------|------------|--------|--------------|----------------|---------|
| 1  | 2013-10-01 05:28:47 | Егорьевск, Коломенское шоссе                  | 82.24 л    | 1      | 5.13 л       | 87.37 л        | 82.24 л |
| 2  | 2013-10-01 19:54:25 | Егорьевск, Коломенское шоссе                  | 61.32 л    | 1      | 20.00 л      | 81.32 л        | 61.32 л |
| 3  | 2013-10-02 04:48:42 | Егорьевск, Коломенское шоссе                  | 63.58 л    | 1      | 35.62 л      | 99.20 л        | 63.58 л |
| 4  | 2013-10-02 16:31:17 | Егорьевск, Коломенское шоссе                  | 51.94 л    | 1      | 28.06 л      | 80.00 л        | 51.94 л |
| 5  | 2013-10-03 04:51:10 | Егорьевск, Коломенское шоссе                  | 51.11 л    | 1      | 46.00 л      | 97.11 л        | 51.11 л |
| 6  | 2013-10-03 12:21:39 | Озеры, Свердлова ул.                          | 40.65 л    | 1      | 41.00 л      | 81.65 л        | 40.65 л |
|    | 2013-10-03 14:01:29 | Луховицы, Новорязанское шоссе                 | 40.40 л    | 1      | 49.33 л      | 89.74 л        | 40.40 л |
| 3  | 2013-10-04 07:49:34 | Егорьевск, Коломенское шоссе                  | 81.03 л    | 1      | 10.00 л      | 91.03 л        | 81.03 л |
| )  | 2013-10-04 18:47:50 | Егорьевск, Коломенское шоссе                  | 50.65 л    | 1      | 28.06 л      | 78.71 л        | 50.65 л |
| 10 | 2013-10-07 06:41:19 | Московское Большое Кольцо, 1.05 км от Усадище | 49.01 л    | 1      | 36.25 л      | 85.26 л        | 49.01 л |

Рисунок 11. Пример табличного отчета об уровне топлива